科研项目 |
[1] 亚bo手机登录主页高层次人才平台建设项目, 大型桥梁结构健康监测异常数据清洗的深度学习方法, 2022.01.01至2029.12.31, 80万元, 在研, 主持 [2] 国家自然科学基金委员会, 面上项目, 51978216, 基于计算机视觉和深度学习的大型桥梁健康监测异常数据诊断, 2020-01-01至2023-12-31, 60万元, 在研, 参与 [3] 国家自然科学基金委员会, 面上项目, 51678203, 基于无线传感与自适应稀疏时频分析的桥梁拉索时变索力识别方法, 2017-01-01至2020-12-31, 62万元, 结题, 参与 |
学术论文 |
[1] TANG Z Y, CHEN Z C, BAO Y Q, LI H. Convolutional neural network‐based data anomaly detection method using multiple information for structural health monitoring [J]. Structural Control and Health Monitoring, 2019, 26(1): e2296. (中科院二区, ESI高被引论文) [2] BAO Y Q, TANG Z Y, LI H, ZHANG Y F. Computer vision and deep learning–based data anomaly detection method for structural health monitoring [J]. Structural Health Monitoring, 2019, 18(2): 401-421. (中科院二区, ESI高被引论文) [3] BAO Y Q, CHEN Z C, WEI S Y, XU Y, TANG Z Y, and LI H. The State of the Art of Data Science and Engineering in Structural Health Monitoring [J]. Engineering. 2019, 5(2): 234-242. (中科院一区, ESI高被引论文) [4] TANG Z Y, BAO Y Q, LI H. Group sparsity-aware convolutional neural network for continuous missing data recovery of structural health monitoring [J]. Structural Health Monitoring, 2021, 20(4): 1738-1759. (中科院一区) [5] BAO Y Q, TANG Z Y, LI H. Compressive-sensing data reconstruction for structural health monitoring: a machine-learning approach [J]. Structural Health Monitoring, 2020, 19(1): 293-304. (中科院一区) [6] LIU D W, TANG Z Y, BAO Y Q*, LI H. Machine‐learning‐based methods for output‐only structural modal identification [J]. Structural Control and Health Monitoring, 2021, 28(12): e2843. (中科院二区) [7] XIANG Z L, BAO Y Q, TANG Z Y, and LI H. Deep reinforcement learning-based sampling method for structural reliability assessment [J]. Reliability Engineering & System Safety. 2020, 199: 106901. (中科院一区) [8] CHEN Z C, BAO Y Q, TANG Z Y, CHEN J H, and LI H. Clarifying and quantifying the geometric correlation for probability distributions of inter-sensor monitoring data: A functional data analytic methodology [J]. Mechanical Systems and Signal Processing. 2020, 138: 106540. (中科院一区) [9] HE J R, GAO R F, and Tang Z Y. A data-driven multi-scale constitutive model of concrete material based on polynomial chaos expansion and stochastic damage model [J]. Construction and Building Materials. 2022, 334: 127441. (中科院一区) |
发明专利 |
[1] 鲍跃全, 李惠, 唐志一. 一种基于计算机视觉和深度学习技术的结构健康监测异常数据诊断方法, 2021.07.16, 中国, ZL201810290291.0. [2] 鲍跃全, 吴迪, 唐志一, 李惠. 一种基于计算机视觉人体姿态估计的施工安全帽佩戴监测方法, 2022.05.17, 中国, ZL201810290291.0. |