MicrosoftInternetExplorer402DocumentNotSpecified7.8 磅Normal0耿翊翔
耿翊翔 硕导
性别:男
职称:副教授
学位:博士
Email:Yixiang_gg@163.com
学习经历
2005.9 - 2008.7亚bo手机登录主页建筑工程学院工程力学系获博士学位
2002.9 – 2005.7云南大学数理学院数学系获硕士学位
1992.9-1996.7云南师范大学数学系获学士学位
工作经历
2008.7-今 亚bo手机登录主页任教
1996.7-2008.6曲靖师范学院任教
研究方向
1.流体力学
2.微纳米力学
3.流固耦合动力学
学术成果
论文:
[1]Geng Y.X., He T.L., Li J.B., Exact travelling wave solutions for the (n+1)-dimensional double sine- and sinh-Gordon equations,Applied Mathematics and Computation,2007,188(2):1513-1534.(SCI收录)
[2] Geng Y.X., Li J.B., Exact solutions to a nonlinear dispersive Schrodinger equation, Applied Mathematics and Computation,2008,195(2):420-439. (SCI收录)
[3] Geng Y.X., Li J.B., Exact explicit traveling wave solutions for the CDF equation, Applied Mathematics and Computation,2008,203(2):536-562. (SCI收录)
[4] Geng Y.X.,Li J.B.,Zhang L.X.,Exact explicit traveling wave solutions for two nonlinear Schrodinger type equations, Applied Mathematics and Computation, 217 (2010) 1509–1521. (SCI收录)
[5] Geng Y.X., Zhang L.X., Bifurcations of traveling wave solutions for the magma equation, Applied Mathematics and Computation, 217 (2010) 1741–1748. (SCI收录)
[6] Geng Y.X., Zhang L.X., Transition to chaos in a curved carbon nanotube under harmonic excitation, International Journal of Modern Physics B, Vol. 26, No. 32 (2012) 1250210 . (SCI收录)
[7] Liu H.Z., Geng Y.X., Symmetry reductions and exact solutions to the systems
of carbon nanotubes conveying fluid, J. Differential Equations 254 (2013) 2289–2303. (SCI收录)
[8] Geng Y.X. Exact solutions for the quadratic mixed-parity Helmholtz-Duffing oscillator by bifurcation theory of dynamical systems, Chaos, Solitons & Fractals, vol. 81, pp. 68-77(2015)(SCI收录)
[9] Geng Y.X. Liu H.Z., Subharmonic Bifurcations and Transition to Chaos in a Pipe Conveying Fluid under Harmonic Excitation, Applied Mechanics and Materials Vols. 444-445 (2014) pp 791-795.(EI收录)
[10] Geng Y.X. Liu H.Z., Stability of Subharmonic Oscillations in a Pipe Conveying Fluid under Harmonic Excitation, Applied Mechanics and Materials Vols. 444-445 (2014) pp 796-800. (EI收录)