代表性学术论文 |
以第一或通讯作者发表的论文 [1] Huang K, Wu J, Yin Y, et al. Atomistic-Continuum theory of graphene fracture for opening mode crack [J]. International Journal of Solids and Structures, 2023, 268: 112172. [2] Huang K, Xu W. A Nonlinear Nonlocal Thermoelasticity Euler–Bernoulli Beam Theory and Its Application to Single-Walled Carbon Nanotubes [J]. Nanomaterials, 2023, 13(4): 721. [3] Meng D, Huang K, Xu W. Impacts of Small-Scale Effect and Nonlinear Damping on the Nonlinear Vibrations of Electrostatic Microresonators [J]. Micromachines 2023, 14, 170. [4] Huang K, Qu B, Xu W, et al. Nonlocal Euler–Bernoulli beam theories with material nonlinearity and their application to single-walled carbon nanotubes [J]. Nonlinear Dynamics, 2022, 109(3): 1423-1439. [5] Huang Kun, Wu Jiye, Yin Yajun; An Atomistic-Based Nonlinear Plate Theory for Hexagonal Boron Nitride [J]. Nanomaterials; 2021, 11(11): 3113. [6] Huang Kun, Yao Ji. Beam Theory of Thermal–Electro-Mechanical Coupling for Single-Wall Carbon Nanotubes [J]. Nanomaterials; 2021, 11(4): 923. [7] Huang Kun, Li Tianpeng, Xu Wei, Cao Liang. Effects of Nonlinear Damping on Vibrations of Microbeam [J]. Applied Sciences; 2022, 12(6): 3206. [8] Huang Kun, Yin Yajun, Qu Benning. Tight-binding theory of graphene mechanical properties [J]. Microsystem Technologies; 2021, 27(10): 3851-3858. [9] 黄坤,王腾飞,姚激. 单层MoS2的热弹耦合非线性板模型[J]. 物理学报, 2021, 70(13):258-264. [10] Huang Kun, Cai Xiping, Wang Mingguang. Bernoulli-Euler beam theory of single-walled carbon nanotubes based on nonlinear stress-strain relationship [J]. Materials Research Express; 2020, 7(12): 125003. [11] Huang Kun, Zhang Shuzhu, Li Jinhai, Li Ze. Nonlocal nonlinear model of Bernoulli–Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes [J]. Microsystem Technologies; 2019, 25(11): 4303-4310. [12] Huang Kun, Qu Benning, Li Ze, Yao Ji. Nonlinear microstructure‐ dependent Bernoulli–Euler beam model based on the modified couple stress theory and finite rotation of section [J]. Micro & Nano Letters, 2018, 13(4): 490-493. [13] Huang K, Feng Q, Qu B. Bending aeroelastic instability of the structure of suspended cable-stayed beam [J]. Nonlinear Dynamics, 2017, 87: 2765-2778. [14] Huang K, Feng Q, Yin Y. Nonlinear vibration of the coupled structure of suspended-cable-stayed beam—1:2 internal resonance[J]. Acta Mechanica Solida Sinica, 2014, 27(5): 467-476. [15]黄坤, 殷雅俊, 吴继业. 单层石墨烯片的非线性板模型[J]. 物理学报, 2014. [16]黄坤, 殷雅俊, 屈本宁,等. 基于Lenosky原子作用势单层石墨烯片的力学模型[J]. 力学学报, 2014(6):6. [17]黄坤, 温建明, 冯奇. 悬索承重梁索耦合结构的垂向运动动力学模型及主共振分析[J]. 工程力学, 2013, 30(2):8. [18]黄坤, 冯奇. 非对称截面两自由度非线性振动[J]. 振动与冲击, 2012, 31(8):80-85. [19]黄坤,冯奇. 梁索耦合结构的风致涡激振动[J]. 振动工程学报, 2011, 024(002):139-145. [20]黄坤, 冯奇. 梁索耦合结构的非线性振动[J]. 同济大学学报:自然科学版, 2011, 39(5):9. [21]黄坤, 冯奇. 悬索桥非共振情况下的振动[J]. 力学季刊, 2009 (3): 363-370. [22]黄坤, 屈本宁. 非线性弹性梁的动力模型[J]. 亚bo手机登录主页学报,理工版, 2007, 32(1): 67-71. |